Density based fuzzy c-means clustering of non-convex patterns
نویسندگان
چکیده
منابع مشابه
Density based fuzzy c-means clustering of non-convex patterns
We propose a new technique to perform unsupervised data classification (clustering) based on density induced metric and non-smooth optimization. Our goal is to automatically recognize multidimensional clusters of non-convex shape. We present a modification of the fuzzy c-means algorithm, which uses the data induced metric, defined with the help of Delaunay triangulation. We detail computation o...
متن کاملImproved Fuzzy C-means Clustering Algorithm Based on Sample Density
Fuzzy clustering techniques, especially fuzzy c-means (FCM) clustering algorithm, have been widely used in automated image segmentation. The performance of the FCM algorithm depends on the selection of initial cluster center and/or the initial memberships value. if a good initial cluster center that is close to the actual final cluster center can be found. the FCM algorithm will converge very q...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملFuzzy C-Means Clustering-Based Speaker Verification
In speaker verification, a claimed speaker’s score is computed to accept or reject the speaker claim. Most of the current normalisation methods compute the score as the ratio of the claimed speaker’s and the impostors’ likelihood functions. Based on analysing false acceptance error occured by the current methods, we propose a fuzzy c-means clusteringbased normalisation method to find a better s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2006
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2005.10.007